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ABSTRACT - This paper examines the validity of applying concepts of tempera- 

ture as defined in claseical thermodynamics to nonequilibrium processes. If 

the irreversibility in the process can be confined to heat flow between suitably 

defined subsysteqas, equilibrium thermodynamics can be applied by the definition 

of additional temperatures to characterize the subeystems. The classical 

thermodynamic temperature i e  defined as suggested by Claueius in terms of 

heat exchange between a reversible engine and energy reeervoirs. 

that the above definition of classical thermodynamic temperature can sometimeb 

be applied to a particular degree of freedom, such a s  vibration, even if it is not 

ir? equilibrium with the other degrees of freedom. However, it does not appear 

possible to extend this concept to a fluid with nonequilibrium chemical composi- 

ti?". 

eguilibrium processes is computed using the concept of multiple temperatures 

and compared with the classical result. The results agree for vibrational but 

It is shown 
- 

t 

To demonstrate this, the entropy rise in vibrational and chemical non- 

not for chemical nonequilibrium, 
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Introduction 

In many problems of curten, interest involving high temperature, high 

velocity flows, nonequilibrium phenomena play an important role. These in- 

clude expansions of high temperature gases in rocket nozzles and hypersonic * 

test facilities, and relaxation phenomena behind shock waves, In analyzing 

' these phenomena it is convenient to employ the methods of classical equilibrium 

thermodynamics. 

While classical thermodynamics is normally applied only to equilibrium 

systems, some authors have sucdessfully applied classical methods to non- 

equilibrium systems by clever definition of the thermodynamic system. 

technique which has been used is to split the system into two subsystems; each 

internally in equilibrium and connected by some irrever sible heat exchange. 

A 

Kantrowitz 1 and Connor and Erickson 2 used this method for analyzing a lagging 

viqrational degree of freedom, introducing a vibrational temperature to charac- 
I 

terize the vibrational subsystem. Wood and Kirkwood 3 extended the treatment 

to' multiple lagging energy modes. Recently Eschenroeder* has applied the same 

idea to chemical nonequilibrium processes, using a chemical temperature de- 

fined by the mass  action law, Questions have been raised regarding the validity 

of these methods. For instance, Heims 5 has poinyd' out the 'limitations of the 
* . I  , .  
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'.' 'Kantrowitz, A. , J. Chem; Phys., 10, 145 (1942). - 
'Connor, L.N. and Erickson, W. D. , A m  J.', 4, 397 (1964). 
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heat flow analogy for the case of simultaneous vibrational and chemical 

nanequilibrium. 

using the concept of multiple temperatures from a classical thermodynamic 

6 tandpoint. 

The purpose of this paper is to examine the justification for 
' 

Thermodynamic temperature is defined classically in terms of a 1 

reversible engine operating between two reservoirs, by the relation 6 

where 7 is the temperature and Q the amount of heat transferred. Heat 

may be* transferred either by conduction or  radiation. 

by the translational energy of the molecules. 

vibrational or electronic transitions and is thus related to the corresponding 

energy distributions. On a statistical basis the energy of a gas . is  described 

by a series of distfibution functions for the various modes of energy storage. 

Tn order to characterize a distribution function by a single parameter, the 

temperature, each degree of freedom of the gas must be internally equilibrated. , . 

The statistical description,' however, does not require equilibrium between 

modes of energy storage. 

. 
Conduction is controlled 

Radiation occurs through rotational, 

! 

Thus we may speak of a translational temperature, 

a rotational temperature, and so forth. 

equilibrium, of course, all these tempe'i'atures a r e  equal. 

between the thermodynamic temperature and the various statistical temperatures 

may be established through the use of a reversible engine. 

For a gas in complete thermodynamic * 

The relationship 
\ 

. 

Consider first a gas which can trsasfer heat,to the engine only by conduc- 
I .  

tion. This can be accomplished by making the IeehgKne: a perfect reflector. If' 

'Zernanskf, M. W. , Heat and Thermodynamics, 4th Ed. (McGraw-Hill Book 
~ 

Co., Inc. # New York, 1957) p. 164, . . 
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thc reservoir gas is internally in  thermal equilibrium its thermodynamic 

temperature is given by the translational temperature. 

of the modes contributing to radiation is excited by some means without changing 

Suppose now that one 

" 

the translational temperature. 

since this is the only mode of heat transfer allowed, the heat transfer to the 

This does not affect the conduction of heat and 

engine wil l  be unchanged. 

equal to the translational temperature. 

Hence, .the thermodynamic temperature is eti l l  

Next suppose the gas can transmit or  receive heat only by radiation 

due to vibfational transitions. This can be accomplished by separating the gas 

from the engine by an evacuated space and making the engine a perfect absorber 

or black body. Since a gas radiates in spectral lines instead of in.a black body 

distribution it is not obvious that the effective "radiation temperature" is equal 

to its statistical vibrational temperature. 

to be the same by the following argument. 

into complete thermal equilibrium, through radiation,. with a black body. A t  

pquilibrium the thermodynamic temperature of the gas and the black body are 

@qual. 

temperature. 

is equal to the translational, and hence, thermodynamic temperature. Now 

These temperatures may be shown 

Suppose first that a gas is brought 

8 
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The thermodynamic temperature of the gas is equal to its translational 

However in equilibrium the statistical vibrational temperature 

suppose the gas is expanded suddenly, lowering its translational temperature 

' without affecting the vibrational energy distribution. If the gas and black body 

can exchange heat only by radiation the thermal equilibrium will  not be disturbed, 

hence the thermodynamic temperature of the gas as measured by the ehgine 
\ '! 

wil l  be the vibrational temperature. 

I 
$ 

'\ * .  

'. It is apparent,from this discussion that the temperature used in classical 

thermo~ynamics may be equivalent to any one of 6€?VeFal etatietical temperatures 
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depending on the particular circumstances. The translational temperature 

is usually thought of as more' fundamental than any of the others since it is 

more easily measured. However practical methods for measuring other tem- 

peratures have been developed; for example, the line reversal  method f o r .  

vibrational temperature in a diatomic gas. 7 It would appear that any tempera- 

ture which describes an energy distribution that can exchange heat with the 

surroundings satisfies the classical definition of a thermodynamic temperature. 

The use of temperatures other than these cannot be justified by the above 

arguments. For example, the chemical temperature, as defined above, does 

not characterize an energy distribution which can exchange heat directly with 

i ts  surroundings. 

composition is a function of pressure as well as temperature. 

It ehould also be noted that for many systems the chemical 

' For  a given 

chemical composition, which specifies an amount of chemical energy, the 

chemical temperature cannot be determined unless the pressure or density is 

also given. 

P 

I 

Both Kantrowitz 1 and Eschenroeder 4 used the concept of multiple tem- 

peratures to calculate the entropy riee in irreversible adiabatic flows. 

considered the irreversibility due to a lagging vibrational heat capacity and 

Kantrowitz 

* 

where ' 7 is the translational temperature, TV the vibrational temperature, 

I '  
, . .  

7Hurle, I. R., RUSSO, A. L, and'Hal1, 3. Gordon,' Spectroscopic Studies . . I  of . , ' 
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and de, the amount of energy exchanged between the two modes, * Eschenroeder 

defined the chemical temperlture T, as  that temperature for which a dis- 

sociating diatomic gas would be in equilibrium at the same density and degree ' 

of dissociation. This model yields 

where de, represents the amount of heat released or absorbed by the chemical 

reaction. 
, r '  

To resolve the correctness of Eqs. (1) and (2) the entropy r ise  in xion- 

equilibrium processes is calculated here by choosipg a hypothetical reversible ' 

path connecting the two end states of the process. It is not always possible to 

find a reversible process connecting two nonequilibrium states, since in many 

cases the states cannot be described by a finite number of state variables. 

The cases considered here are.rather special in that each energy distribution 

is internally in equilibrium. 

cases described above and a r e  presented in the next two sections. 

expression for vibrational nonequilibrium entropy r i se  (Eq. (1) ) is verified, ' 

but (Eq. (2) ) for chemical nonequilibrium does not appear to be valid, 

. ' 

Calculations have been carried out for the two 

f The . 

1 ,  

. ,  
*. 

* . '  
Vibrational Nonequilibrium I .  * . .  

Consider a gas in which the vibrational degree of freedom is not 

'.. equilibrated with the "fast1' degreesdfr,eedom: translation, rotation, etc. 1 '  I .  

A hypothetical reversible path wil l  be constructed to calculate the entropy r i se  

due to vibrational relaxation, 

sibility due to other dissipative effects such as viscosity. 

each degre'e of freedom is internalw equilibrated, that ie ,  the energy i e  distri-- '  

buted according to a MaxwellrBoltzmann distribution law, Then the energy in 

, 
The process is assumed to be .free of i r rever-  

It is assumed that 

, . '. 1 

* Q  '. 
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each'degree of freedom can be described by a single parameter, the tempera- 

ture appearing. in the distribution function. 

Under these assumptions the internal energy of the gas may be written 

where e$ depends only on temperature and e, is a function of temperature 

and a parameter oc expressing the degree of vibrational excitation, 7 is 

the translational temperature of the gas .  In order to compute'the change in . .  

entropy for a n  irreversible process on the basis of classical thermodynamics 

it is necessary to choose some hypothetical reversible path connecting the two 

end states. 

by 1-2. The following reversible path is chosen: (a) The gas is heated or 

cooled at constant density, keeping the vibrational energy constant, to a temper- 

&ture 7' . is chosen as the temperature at which the gas is in complete 

thermodynamic equilibrium with the given energy distributions, This process * 

i z 3  reversible since no energy exchange occurs between the vibrational mode 

aqd the other degrees of freedom. 

c . 
On the 7-f diagram shown in Fig,  1 the real  process is denoted 

L . ,  1.' 

I 

'' 

(b) The g a s  undergoes a reversible process 
I .  

. Ib ' -2 '  bringing it to the density and the proper amount of vibrational energy re- 

quired a t  state 2. 

with frozen vibration. ' 

(c) The gas is. co.oled or heated to state 2 at constant deneity 
' 

\ 
The hypothetical processes (a)' and (c) require special consideration in 

that their execution requires the vibrational relaxation time to be infinite com- 

pared to the time required to maintain translational equilibrium. 'She fact that 

no ;real gas could fulfill this requirement does not invalidate the calculation of 

entropy changes based on such a process. A s  long as the translational and . 
vibrational degrees of freedom a r e  each internally, equilibrated ,(in a Boltzmann 

* 

. 
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. L. . . -  
distribution) the process  end states can be described by a set of thermodynamic 

variables. 

- same amount along any path, reversible or irreversible, The reversible 

path WQB chorran to facilitate the calculation by making uee of the equality ' 

Hence the entropy, which is a state function, will change by the 

however the result is not dependant on the path.chosen. ' .  
t 

The entropy change for the process 1-2 is the sum of the change8 over 

the path 1-1'-2'-2. 

. .  
. .  
, , I .  



A n  energy balance for the process 1-2 yields 

Hence 

If the actual process is adiabatic the;last term of course ie  zero. 

exact result obtained in Ref. 1 and 2, Eq. ( I ) ,  and confirms the validity of 

This is the 

the use of vibrational temperature in the classical thermodynamic sense. 

b '  

Chemical Nonequilibrium 

Next consider the irreversibility caused by chemical nonequilibrium. . 

Assuming the re'actants and products to be ideal gases the internal energy per 

unit mass  of the mixture is given by 

1 

where oc is the-mass fraction of products and e,. and e;, a r e  the specific 1'' 

internal energies of reactants and products. 

The same path is used as in the first case: ( 1-1' ) the gas is heated 
I 

or cooled a t  constant density and composition to a temperature 7; at which 

the gas is in chemical equilibrium, 

the final density and composition, 

( 1'-2' ) ,*The gas is brought reversibly to 

( 2!-2 ) ' The gas is heated or cooled a t  con- 
-w 

- \  stant density and composition to the final temperature, The differential change 

in internal energy may be 

(11) 

\ de s 
'\ 

* = (.,-e 
\ 

, 

~ 
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where C,, is the constant volume specific heat for the mixture. 

The entropy contributions are computed as before: 

.. , 

where R is. the gas constant €or the mixture and variee with compoeition. 

-V 

Summing: 

, Js; I 

, .(15) 
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C. -* A n  cnergy balance for' the proCe88 ( 1-2 ) yield8 

The entropy r i se  in chemical nonequilibrium'proce~ses can a160 be calculated by 

the use of the well known Gibbs equation, 

Gibbs equation, as shown in the Appendix, 

Equation (18) can be reduced to the 
L 

For the particular case of a diatomic gas relaxing adiabatically, &a, ,  = 0 ,  
l 

ea= e, , and cy=enl # where ea and e,,, a re  the internal energy of the 

atoms and molecules, respectively. 

energy'of the atoms is redefined to exclude chemical energy 

For  comparison with Eq. (2)  the internal 

I 

0 where. Jbd represents the dissociation energy at some reference temperature: 
.. 

Rossini, F.D., Ed.,  Thermodynamics and Physics of Matter, (Vol. 1, 8 

High Speed Aerodynamics and Set Propulsion, Princeton* Un'iv 

Princeton, New Jersey, 1955) p. 782. 
'* 
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This is not the same result 

as a heat exchange between 

. .  - , .  - 

which is obtained by treating the irreversibility 

two reservoire (Eq. (2)  ). This confirms the 

earlier argument that the chemical temperature defined by the mass 

i s  not the same as the claesical thermodynamic temperature defined 

of a heat engine. 
. 

action law 

in terme . 

Conclusions 

One method of extending the results of equilibrium thermodynamics 

to nonequilibrium processes is the use of a heat bath analogy, wherein the 

irreversibility is confined to a heat flow between suitably defined subsystems. 

This model requires the use of multiple temperatures; The thermodynamic 

justification for  defining these temperatures has been examined by considering 

the classical definition of thermodynamic temperature. 

temperatures characterizing degrees of freedom which a re  capable of heat ex- 

change satisfy the classical definition, and hence that the heat bath analogy is ' 

It w a s  found that 

valid for proce-sses such a s  rotational o r  vibratiorial relaxation as long as each 

degree of freedom exhibits'a Boltzmann distribution. It is not possible to ex- 

tend the analogy to chemical nonequilibrium using a chemical temperature defined 

by the mass  action law since the temperature introduced does not satisfy the 

classical definition. 

<- 

\ 

The entropy rise for vibrational and chemical relaxation has been ob- 

tained using equilibrium thermodynamicb and compared with &e results of the 

heat bath analogy. The results agree for vibrational relaxation but disagree . 

foi.'. chemical 

I 

. 

relaxation. 

I ,  



A pp cndix 

The Gibbs oquation for a reacting mixture is given by 8 

whcre ,/ , S , and fl a r e  the total entropy, internal energy and volume 

of the mixture, pi is the molar chemical potential and nj the number of 

moles. 

Ad 

If there a r e  no dissipative effects other than chemical nonequilibkium 

d Q  s d E  +?'de ' (21) 

Combining Eqe. (20)  add (21) and 'writing the equation for unit mass.of mixture 

yields 

- For a reacting mixture this may be further simplified by introducing the .mass 

. fraction of products 0c 
1 

I 

where / u p  and /Up  a re  the average chemical potentials for reactantslaad 

products. For the jth species, the chemical potential at unit pressure is given 

. by 
, . .  

Introducing the stoichiometric coefficients V: \ and V-  I for  reactants and 
J J 

13 



. whcre 7 is the molecular weight of species j, The second term may be ?i 
I 

rdar ranged  as follows. If p~ 

the mixture density and composition, the gas  law may be written 

represents the equilibrium partial pressure at 

where 7' is the equilibrium'temperature for the same density and composition. 

.. . .  

Substitutions of Eqs. (25)-(27) into (24) gives 

- 4  

Equations (28) and (29) yield the result 
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